This infinitesimal phenomenon has been studied by physicists for decades, but while the overall concept may be easy to imagine, discerning the mathematical relationships that underpin such electrified explosions has been anything but.

Now that it’s been figured out, scientists say this one formula could lead to new advancements in everything from space propulsion to mass spectrometry, high-resolution printing, air purification, molecular analysis, and more.

“Before our result, engineers and scientists had to perform computationally intensive simulations to assess the stability of an electrified droplet,” explains mechanical engineering and physics graduate student Justin Beroz from MIT.

“With our equation, one can predict this behaviour immediately, with a simple paper-and-pencil calculation.”

It’s not something non-physicists spend a lot of time thinking about, but the phenomenon Beroz and his team have characterised in their new paper is something that takes place all the time in the real world, even if it’s mostly invisible to people.

[Read More]